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Numerical Simulation of 3-D Potential Problems by Regular
Hybrid Boundary Node Method

Jianming Zhang
College of Mechanical and Automotive Engineering, Hunan University, Changsha, China

The Regular Hybrid Boundary Node Method (RHBNM) is de-
veloped for solving three-dimensional potential problems. Formu-
lations are developed and a general computer code written in C++.
The RHBNM is formulated in terms of the domain and boundary
variables. The domain variables are interpolated by classical funda-
mental solutions with the source points located outside the domain,
and the boundary variables are interpolated by MLS approxima-
tion. The main idea is to retain the dimensionality advantages of the
Boundary Element Method, and localize the integration domain to
a regular sub-domain so that no mesh is needed for integration. All
integrals can be easily evaluated over regularly shaped domains
(in general, semi-sphere in the 3-D problem) and their boundaries.
Numerical examples demonstrate that high convergence rate with
mesh refinement and high accuracy with a small node number are
achievable.

Keywords Meshless Method, Moving Least-Squares Approxima-
tion, Hybrid Boundary Node Method, Potential Problem

1. INTRODUCTION
Although the Finite Element Method (FEM) and Boundary

Element Method (BEM) have made great achievements in solv-
ing practical engineering problems, the interest of pursuing new
methods has never decreased through time. This is because, with
mesh-based techniques, the task of mesh generation for complex
geometries is often time-consuming and prone to errors, and
the difficulties with re-meshing in problems involving moving
boundaries, large deformations or crack propagation are enor-
mous, in spite of significant progress made in 3-D meshing algo-
rithms. In recent years, novel algorithms, referred to as “mesh-
less” methods, have been proposed that largely circumvent the
problems associated with meshing.
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Meshless methods originate from the Smooth Particle Hydro-
dynamics (SPH) method for modeling astrophysical phenom-
ena [1], and gain popularity after the publication of the dif-
fuse element method [2] and the element free Galerkin method
(EFG) [3]. The EFG uses a global symmetric weak form and
the shape functions from the moving least-squires approxima-
tion. Although no mesh is required for the variable interpola-
tion, background cells are inevitable for the “energy” integra-
tion. Therefore, the EFG method is a pseudo-meshless method.

To avoid the use of the background cells and thus achieve
a truly meshless method, Atluri and his co-workers have intro-
duced a Meshless Local Boundary Integral Equation (MLBIE)
[4] and a Meshless Local Petrov-Galerkin (MLPG) approach [5].
Both methods use local weak forms over a local sub-domain, and
therefore are truly meshless, as no “finite element or boundary
element mesh” is required either for the variable interpolation
or for the “energy” integration. All integrals can be easily evalu-
ated over regularly shaped domains (for example, circles in 2-D
problems and spheres in 3-D problems) and their boundaries.

In 1997, Mukherjee et al. proposed a boundary-type meshless
method, which they call the Boundary Node Method (BNM)
[6]. The BNM combines the MLS interpolants with Boundary
Integral Equations (BIE) in order to retain both the meshless
attribute of the former and the dimensionality advantage of the
latter. This method only requires a nodal data structure on the
bounding surface of a body. However, this method is still not a
truly meshless one, as an underlying cell structure is again used
for boundary integration.

A question arises here—is there possibly a method of solving
boundary value problems that only requires nodes constructed
on the surface of a domain and requires no cells either for interpo-
lation of the solution variables or for the numerical integration?
This method will essentially simplify the input data structure,
and be an important step in the direction towards complete anal-
ysis automation.

The answer is positive. One of the possibilities can be the
Hybrid Boundary Node Method (Hybrid BNM) [7], which com-
bines the MLS interpolation scheme with the hybrid displace-
ment variational formulation. However, the Hybrid BNM has a
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drawback of serious “boundary layer effect,” i.e. the accuracy of
results in the vicinity of the boundary is sensitive to the proximity
of the interior points to the boundary. To overcome this problem,
a new Regular Hybrid Boundary Node Method (RHBNM) was
proposed by the same authors [8–10]. In the new method, the
source points of the fundamental solutions are located outside
the domain rather than on the boundary as in the Hybrid BNM
or other hybrid boundary element models [11, 12]. Computa-
tions for 2-D potential problems show that the numerical results
are no more sensitive to the proximity of the interior points to
the boundary. Very high accuracy can be achieved with a small
number of boundary nodes. In this paper, the RHBNM is further
developed for solving 3-D potential problems.

The hybrid boundary element method was first proposed by
Schnack [13], in which he stressed using the boundary element
method to generate a hybrid stress finite element model, giv-
ing rapid convergence of the results and accurate solution for
stress concentration problems. Dumont [11] has presented a hy-
brid stress boundary element formulation based on Hellinger-
Reissner principle with stresses in the domain and displacements
on the boundary as independent functions. DeFigueredo and
Brebbia [12] have introduced a hybrid displacement variational
formulation of BEM, which is based on a modified functional
using three independent variables, i.e. displacements and trac-
tions on the boundary and displacements inside the domain.
This approach uses the classical fundamental solution to inter-
polate the displacements in the domain and thus allowing for
the transfer of the domain integrals to the boundary. The re-
sulting system of equations is written in terms of boundary dis-
placements only, and has the advantage of being symmetrical,
which is easy to couple with the FEM. In the present paper,
the objective is not to obtain the symmetrical system of equa-
tions, but a truly boundary-type meshless method by combining
the hybrid displacement variational formulation and the mesh-
less interpolation scheme. The variables on the boundary are
interpolated by MLS scheme and a truly meshless RHBNM is
achieved.

The following discussion begins with the brief description
of the MLS approximation in Section 2. The formulation of
RHBNM for 3-D potential problems is developed in Section
3. Numerical examples for 3-D potential problems are given in
Section 4. The paper ends with conclusions and discussions in
Section 5.

2. MLS APPROXIMATION SCHEME ON 3-D SURFACES
The MLS interpolation scheme for the RHBNM can be ap-

plied to a generic surface. Since the RHBNM nodes lie only
on the boundary ∂� of a 3-D body �, the MLS approximation
is needed on the bounding surfaces. It is assumed that, for 3-D
problems, the bounding surface ∂� of a 3-D body is the union of
piecewise smooth segments called panels. To avoid the discon-
tinuity at edges and corners, the MLS interpolation is separately
performed on each panel.

For the MLS interpolation on a generic surface, the first step is
to choose a proper coordinate system. In CAD software models,
surfaces are usually represented in parametric forms.

x = x(s1, s2), y = y(s1, s2), z = z(s1, s2)

where the parametric coordinates are defined in the range,
s1, s2 ∈ [0, 1]. To be consistent with CAD software and ren-
der a general sense MLS scheme for all kinds of surface, the
MLS interpolation on a surface are performed in the parametric
plane as well. For problems in potential theory, the unknown
potential function and its gradient on a surface are expressed in
the parametric form as

u(x, y, z) = u(x(s1, s2), y(s1, s2), z(s1, s2)) = u(s1, s2)

q(x, y, z) ≡ ∂u

∂n
= q(x(s1, s2), y(s1, s2), z(s1, s2)) = q(s1, s2)

where n is a unit outward normal to ∂� at a point on it.
The MLS interpolation scheme will be coupled later with

a 3-D hybrid “displacement” variational formulation that uses
three independent variables, the potential and normal flux on
the boundary and the potential inside the domain. Since the
potential and the normal flux on the 2-D bounding surface will
be interpolated by the MLS scheme, only ũ and q̃ defined as the
boundary potential and the normal flux will be addressed in this
section.

For a panel over which a number of randomly located nodes
{sI }, I = 1, 2, . . . , N , the MLS interpolants for ũ and q̃ are
defined as

ũ(s) =
m∑

j=1

p j (s)a j (s) = pT(s)a(s) (1)

q̃(s) =
m∑

j=1

p j (s)b j (s) = pT(s)b(s) (2)

where s is a generic point with parametric coordinates (s1, s2),
p1 = 1 and p j (s), j = 2, . . . , m are monomials in (s1, s2). The
monomials p j (s) provide the intrinsic polynomial bases for ũ
and q̃. In this study, a quadratic background basis is used, i.e.

pT(s) = [
1, s1, s2, s2

1 , s1s2, s2
2

]
, m = 6 (3)

The coefficient vector a(s) and b(s) is determined by minimizing
a weighted discrete L2 norm defined as

J1(s) =
N∑

I=1

wI (s)[pT(sI )a(s) − û I ]2 (4)

J2(s) =
N∑

I=1

wI (s)[pT(sI )b(s) − q̂I ]2 (5)

where points sI are boundary nodes, s is an evaluation point
E on the panel, N is the number of boundary nodes in the
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neighborhood of E for which the weight functions wI (s) > 0. It
should be noted here that û I and q̂I , I = 1, 2, . . . , N are the fic-
titious nodal values other than the nodal values of the unknown
ũ I and q̃I in general. This distinction between û I and ũ I (or
q̂I and q̃I ) is very important in the view of the fact that MLS
interpolants lack the delta function property.

Solving for a(s) and b(s) by minimizing J1 and J2 in equation
(4) and (5), and substituting them into Eqs. (1) and (2), gives
a relation that may be written as the form of an interpolation
function similar to those used in the FEM, as

ũ(s) =
N∑

I=1

�I (s)û I (6)

q̃(s) =
N∑

I=1

�I (s)q̂I (7)

where

�I (s) =
m∑

j=1

p j (s)[A−1(s)B(s)] j I (8)

with the matrices A(s) and B(s) defined by

A(s) =
N∑

I=1

wI (s)p(sI )pT(sI ) (9)

B(s) = [w1(s)p(s1), w2(s)p(s2), . . . , wN (s)p(sN )] (10)

The MLS approximation is well defined only when the matrix
A in Eq. (9) is non-singular.

The �I (s) is usually called the shape function of the MLS
approximation corresponding to nodal point sI . From Eqs. (8)
and (10), �I (s) = 0 when wI (s) = 0. The fact that �I (s)
vanishes for s not in the support of nodal point sI preserves
the local character of the MLS approximation.

Several kinds of weight function can be seen in the literature;
the choice of weight functions and the consequences of a choice
in the EFG method are discussed in some detail elsewhere [14].
In this study, Gaussian weight function is selected. Correspond-
ing to a node sI , the Gaussian weight function may be written
as

wI (s) =




exp[−(dI /cI )2] − exp[−(d̂ I /cI )2]

1 − exp[−(d̂ I /cI )2]
, 0 ≤ dI ≤ d̂ I

0, dI ≥ d̂ I

(11)

where cI is a constant controlling the shape of the weight func-
tion, and d̂ I is the size of the support for the weight function
wI . From Eq. (10), the weight function has compact support,
which is decided by the parameter d̂ I . The compact support is
also an associated range of influence for each node. Usually, the
shape of the compact support is chosen to be a circle in meshless

models. Because a circle becomes an ellipse when mapped from
real space into parametric space, this study used an ellipse for
the shape of the compact support with d̂ I being the half-length
of major axis of the ellipse. Denoting the half-length of minor
axis by d̂ ′

I , then

dI =
√√√√(

s1 − s I
1

)2 + d̂2
I

d̂
′2
I

(
s2 − s I

2

)2

The d̂ I and d̂ ′
I should be chosen such that they should be large

enough to have sufficient number of nodes covered in the do-
main of definition of every sample point (N ≥ m) to ensure the
regularity of A. But too large d̂ I and d̂ ′

I will lose the local char-
acter of the MLS interpolation, or even leads to ill-conditioned
matrix A [15]. In this study, d̂ I and d̂ ′

I are chosen such that
2 m ∼ 4 m nodes are included in the support of each node.

3. REGULAR HYBRID BOUNDARY NODE METHOD
The potential problem in three dimensions governed by

Laplace’s equation with boundary conditions is written as

u,i i = 0, ∀x ∈ �

u = ū, ∀x ∈ �u

u,i ni ≡ q = q̄, ∀x ∈ �q

(12)

where the domain � is enclosed by � = �u + �q , ū and q̄
are the prescribed potential and normal flux, respectively, on
the essential boundary �u and on the flux boundary �q , and
n is the outward normal direction to the boundary �, with ni

components.
The RHBNM is based on a modified variational principle.

The independent functions are assumed to be

– potential field in the domain, u;
– boundary potential field, ũ;
– boundary normal flux, q̃.

The corresponding variational functional �AB is defined as

�AB =
∫

�

1

2
u,i u,i d� −

∫
�

q̃(u − ũ)d� −
∫

�q

q̄ũd� (13)

where the boundary potential ũ satisfies the essential boundary
condition, i.e., ũ = ū on �u .

By carrying out the variations it can be shown that

δ�AB =
∫

�

(q − q̃)δud� −
∫

�

u,i i δud�

+
∫

�q

(q̃ − q̄)δũd� −
∫

�

(u − ũ)δq̃d� (14)

The vanishing of δ�AB for arbitrary variations δu in �, δũ and
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δq̃ on �, with δũ = 0 on �u , gives the following Euler equations:

u,i i = 0, in �

u − ũ = 0, on �

q − q̃ = 0, on �

q̃ − q̄ = 0, on �q

(15)

Consequently, the solution of the problem is now given in terms
of the functions u, ũ and q̃ , which makes δ�AB stationary.

With the vanishing of δ�AB , we have the following equivalent
integral equations:

∫
�

(q − q̃)δud� −
∫

�

u,i i δud� = 0 (16)
∫

�

(u − ũ)δq̃d� = 0 (17)
∫

�q

(q̃ − q̄)δũd� = 0 (18)

If the flux boundary condition, q̃ = q̄ , is imposed in the same
way as the essential boundary condition after the matrices have
been computed, Eq. (18) holds. So it can be ignored temporarily
in the following development.

Equations (16) and (17) hold in any sub-domain, for example,
in a sub-domain �s and its boundary �s and Ls (see Figure 1).
Following Zhu [16], the following weak forms are used for the
sub-domain �s and its boundary �s and Ls to replace Eqs. (16)

FIG. 1. The local domain centered at a node sJ and the source point of fun-
damental solution corresponding to a node sl .

and (17):

∫
�s+Ls

(q − q̃)vd� −
∫

�s

u,i i vd� = 0 (19)

∫
�s+Ls

(u − ũ)vd� = 0 (20)

where v is a test function. Equations (19) and (20) hold irrespec-
tive of the size and the shape of �s and its boundary ∂�s . This is
an important observation, which forms the basis for the follow-
ing development. We now deliberately choose a simple regular
shape for �s . The most regular shape of a sub-domain should be
an n-dimensional sphere for a boundary value problem defined
on an n-dimensional space. In the present paper, the sub-domain
�s is chosen as the intersection of the domain � and a sphere
centered at a boundary node sJ (see Figure 1).

In Eqs. (19) and (20), ũ and q̃ on �s are interpolated by
MLS in Eqs. (6) and (7), but on Ls , they have not been defined
yet. To solve this problem, we deliberately select v such that all
integrals over Ls vanish. This can be easily accomplished by
choosing v as the weight function in the MLS approximation,
with the half-length of the major axis d̂ I replaced by the radius
rJ of the sub-domain �s , namely

vJ (Q) =



exp[−(dJ /cJ )2] − exp[−(rJ /cJ )2]

1 − exp[−(rJ /cJ )2]
, 0 ≤ dJ ≤ rJ

0, dJ ≥ rJ

(21)

where dJ is the distance between a domain point Q and the nodal
point sJ . Therefore, v vanishes on Ls .

The u and q in � and on � are defined as

u =
N N∑
I=1

UI xI (22)

q =
N N∑
I=1

∂UI

∂n
xI (23)

where UI is the fundamental solution of Lapalce’s equation ; xI

are unknown parameters; NN is the total number of boundary
nodes.

For 3-D potential problem, the fundamental solution is

UI = 1

4π

1

r (Q, PI )
(24)

where Q and PI are the field point and the source point respec-
tively. PI is outside the domain and determined by

PI = sI + n(sI ) · h · SF (25)

where h is the average distance between neighboring nodes,
n(sI ) is the unit outward normal to the boundary at node sI , and
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SF is a scale factor. As can be imagined, the scale factor, SF,
plays an important role in the performance of the present method.
Too small a value for SF will lead to nearly singular integrals
and thus inaccurate results. On the other hand, too large a value
will lead to an ill-conditioned system of algebraic equations as
well. From our computations, the proper range for SF is between
3.0 and 6.0.

As u is expressed by Eq. (22), the last term at the left-hand
side of Eq. (19) vanishes. Substituting Eqs. (6), (7), (21), (22)
and (23) into Eqs. (19) and (20), and omitting the vanished terms,
we have

n∑
I=1

∫
�s

∂UI

∂n
vJ (Q)xI d� =

n∑
I=1

∫
�s

�I (s)vJ (Q)q̂ I d�

n∑
I=1

∫
�s

UI vJ (Q)xI d� =
n∑

I=1

∫
�s

�I (s)vJ (Q)û I d�

(26)

Writing the above equations for all nodes, we obtain the fol-
lowing system of equations:

Ux = Hq̂ (27)

Vx = Hû (28)

where

UIJ =
∫

� J
s

∂UI

∂n
vJ (Q)d�

VIJ =
∫

� J
s

UI vJ (Q)d�

HIJ =
∫

� J
s

�I (s)vJ (Q)d�

xT = [x1, x2, · · · , xn]

q̂T = [q̂1, q̂2, . . . , q̂n]

ûT = [û1, û2, . . . , ûn]

The evaluation of the matrices U and V is much simpler than
that in BEM and BNM. No singular integration is involved, as the
source points of fundamental solutions determined by equations
(25) are outside the domain.

For well-posed problems, either u or q is known at each
node on the boundary. However, transformations between û I

and ũ I , q̂I and q̃I must be performed due to the fact that the
MLS interpolants lack the delta function property of the usual
BEM shape functions [17, 18]. For u prescribed panels, û I can
be obtained by

û I =
N∑

J=1

RIJũ J =
N∑

J=1

RIJū J (29)

and for q prescribed panels, q̂I can be obtained by

q̂I =
N∑

J=1

RIJq̃J =
N∑

J=1

RIJq̄J (30)

where RIJ = [�J (sI )]−1◦ Rearranging Eqs. (27) and (28) gives
the final system of equations to uniquely determine x.

The potential u and the flux q at any point inside domain �

or on boundary � are evaluated by Eqs. (22) and (23) without
further integrations. Since u and q on boundary � can be eval-
uated in the same way as those inside domain, the unknowns q̂
and û need not be computed and hence the evaluation of inverse
matrix V−1 is avoided. This is in contrast to that in the Hybrid
BNM [7].

As can be seen, the present method is truly meshless with
no boundary elements used for interpolations or for integra-
tions. Moreover, no further integration is needed in the “post-
processing” step.

4. ILLUSTRATIVE NUMERICAL RESULTS
A few illustrative numerical results from the RHBNM, to-

gether with comparisons with exact solutions, follow. In all
cases, the Laplace equation ∇2u = 0 is solved with appro-
priate prescribed boundary conditions. In the present method,
the MLS interpolation and the local surface integration are per-
formed separately. Therefore, the MLS points sI in Eqs. (9) and
(10) also independent of the nodes sJ in Eq. (25). Computa-
tions show that the relative locations of the MLS points sI and
the nodes sJ have no effect on the numerical results. This is in
contrast to that in the BNM [15].

For the purpose of error estimation and convergence studies,
a “global” L2 norm error, normalized by |u|max is defined as

e = 1

|u|max

√√√√ 1

N

N∑
i=1

(
u(e)

i − u(n)
i

)2
(31)

where |u|max is the maximum value of u over N sample points,
the superscripts (e) and (n) refer to the exact and numerical
solutions, respectively.

The method has been tested thoroughly on three 3-D geomet-
rical objects, namely the sphere, the cube and the elbow hose.
To compare the current method with the BNM, the first two are
taken from reference [15]. And the last one is added to show the
advantage of the truly meshless nature of the current method.

The following issues have been investigated:

(i) the scale factor, SF, in Eq. (25),
(ii) the radius rJ of the local sub-domain in Eq. (21).

In all examples, if not mentioned, the size of support for
weight function, d̂I in Eq. (11), is taken to be 3.0h, and cI be
such that d̂ I /cI is constant and equal to 3.0. The size of the local
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domain (radius rJ ) for each node is chosen as 1.5 h and cI in
Eq. (21) taken to be such that rJ /cJ is constant and equal to 3.0.
To perform the integration in Eq. (26), all local surfaces �s are
mapped into unit circles in the parametric space, and a unit circle
is divided into 8 parts, 2 segments in radial and 4 segments in
circumference, respectively. In each part, 5×5 Gauss points are
used.

4.1. Dirichlet Problem on a Sphere
The example solved here is the Laplace’s equation on a

sphere of radius 2 centered at the origin. The usual spheri-
cal polar coordinates θ and φ are used. On the surface, 800
MLS points and 136 uniformly spaced nodes are used. Three
cases are tested, in which the exact solution are as follows,
respectively:

(i) Linear solution

u = x + y + z (32)

(ii) Quadratic solution

u = xy + yz + zx (33)

(iii) Cubic solution

u = x3 + y3 + z3 − 3yx2 − 3xz2 − 3zy2 (34)

In each case, the Dirichlet boundary conditions correspond-
ing to the exact solutions have been imposed on the surface of
the sphere. The relative errors (Eq. (31)) of u and its x-derivative
inside the sphere, denoted by DM-u and DM-q in the figures,
are evaluated over 11 sample points uniformly distributed from
(0,0,0) to (2,0,0); and the relative errors of u and q(≡ ∂u/∂n)
on the surface, denoted by SF-u and SF-q in the figures, are
evaluated over 11 sample points uniformly distributed along the
half equator of the sphere (0 ≤ θ ≤ π ). Results for various
sub-domain radius, rJ , are shown in Figure 2. It should be noted
here that the ∪�s do not cover the whole bounding surface when
rJ ≤ 0.5 h (where h is the mesh size), and the �s will be over-
lapped when rJ ≥ h. Figure 2 shows that results are in all cases
accurate no matter whether �s are overlapped, or even uncover
the body’s boundary.

The scale factor SF in Eq. (25) is also studied in this example.
Figure 3 shows the relative errors as a function of SF. Results
are very accurate for SF ≥ 2.0. As mentioned earlier, a too-large
value of SF may lead to an ill-conditioned system of equation.
Further study shows that the largest value of SF that ensure the
RHBNM non-degenerate is 26.0, and this value is independent of
boundary conditions while dependent on the domain geometry
and meshing.

FIG. 2. Relative errors for various sub-domain radius, rJ : a for the linear
field, b for quadratic the field, c for the cubic field.

A more challenging problem has also been tested, in which
the following analytical solution is used

u = 2r2

R2
cos2 φ − 2r2

3R2
− 1

3
(35)

where R is the radius of the sphere and φ the angle measured
from the z-axis. The Dirichlet boundary condition on the surface



D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, J

ia
nm

in
g]

 A
t: 

03
:4

0 
24

 J
an

ua
ry

 2
00

8 

NUMERICAL SIMULATION OF 3-D POTENTIAL PROBLEMS BY REGULAR HYBRID BOUNDARY NODE METHOD 117

FIG. 3. Relative errors for various scale factors, SF: a for the linear field, b
for quadratic the field, c for the cubic field.

then becomes

u|(r=R) = cos 2φ (36)

Numerical results show that the relative errors for u and q on
the surface are 0.0117 and 0.0439, respectively, for rJ = 1.5h
and SF =3.0. The u and q along the meridian from the RHBNM
are shown in Figure 4 with exact solutions. In the RHBNM,
it is very appealing that very high accuracy can be achieved.
The numerical results almost reproduce the analytical solution
exactly, and are no more sensitive to the proximity of the interior
points to the boundary, in contrast with that in the Hybrid BNM
[7] or other hybrid boundary element methods [12].

FIG. 4. u and q along the meridian of the sphere.

FIG. 5. Relative errors for various sub-domain radius, rJ : a for Dirichlet
problem, b for Neumann problem, c for mixed problem.
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FIG. 6. Relative errors for various scale factor, SF: a for Dirichlet problem,
b for Neumann problem, c for mixed problem.

4.2. Dirichlet, Neumann and Mixed Problem on a Cube
The second example considers a cube that is bounded by

the surfaces x = ±1, y = ±1 and z = ±1. Equation (34) is
used as the exact solution. A Dirichlet problem and a Neumann
problem are solved for which the essential boundary condition
and the natural boundary condition are prescribed on all faces,
corresponding to the exact solution, respectively, and a mixed
problem for which the essential boundary condition is imposed
on faces z = ±1, and the natural boundary condition on faces
x = ±1 and y = ±1. 10 × 10 MLS points and 5 × 5 nodes on
each face are used.

FIG. 7. Relative errors and convergence rates for Dirichlet, Neumann and
mixed problem on a cube.

The relative errors of u and its x-derivative inside the cube,
denoted by DM-u and DM-q in the figures, are evaluated by
Eq. (31) over 11 sample points uniformly distributed from (0,0,0)
to (1,0,0); and that on the surface, denoted by SF-u and SF-q in
the figures, are evaluated over 11 sample points uniformly dis-
tributed on the diagonal of the face x = 1. Results for various
sub-domain radius, rJ , with SF = 3.0, for the Dirichlet, Neu-
mann and mixed problems are shown in Figure 5. It can be seen
that results are accurate in all cases no matter whether �s are
overlapped, or even uncover the entire boundary.

The effect of the selection of the scale factor SF has also
been studied in this example. Figure 6 shows that results are all
accurate when SF ≥ 2.0. As mentioned earlier, the scale factor
SF cannot be too large. Fortunately, from Figure 6, it is easy to
see that we have a wide range to choose a proper value for SF
in the case that the RHBNM does not degenerate.

To study the convergence of the present method, the Dirichlet,
Neumann and mixed problems have been tested on three regular
nodes arrangements: (a) 5 × 5 nodes on each face, (b) 10 × 10
nodes on each face, and (c) 20 × 20 nodes on each face, with
SF × h to be constant and equal to 1.0. Figure 7 shows the

FIG. 8. Relative errors for various scale factor, SF, for Dirichlet problem on
a cube with a complicated field.
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FIG. 9. The elbow pipe and its main sizes.

convergence of the x-derivate inside the cube. It can be seen
that the present RHBNM has high rates of convergence.

In addition to the polynomial representations of the exact
solution, a problem has been tried with the following exact so-
lution:

u = sinh
πx

2
sin

πy

2
√

2
sin

π z

2
√

2
(37)

Dirichlet boundary conditions according the exact solution
are imposed on the surface of the cube. Again, 10 × 10 MLS
points and 5×5 nodes on each face are used. The relative errors
for various SF with rJ = 1.5h are shown in Figure 8. It is
appealing that the results are most accurate when SF ≥ 2.0.

4.3. Dirichlet Problem on an Elbow Pipe
In order to show the advantages of the truly meshless nature

of the RHBNM, a more complicated geometry, namely an el-
bow pipe, is considered here, which is shown in Figure 9 with
main dimensions. Three analytical fields, namely linear field
(Eq. (32)), quadratic field (Eq. (33)) and cubic field (Eq. (34)),
have been considered. In all cases, Dirichlet boundary condi-
tions are imposed on the entire boundary, and 1500 MLS points
and 1250 nodes are used with rJ =1.5 and SF=1.0. The rel-
ative errors of u and x-derivate inside the domain, evaluated
on 11 sample points uniformly spaced on a internal line seg-
ment from (0,7.5,0) to (5,7.5,0), are 0.02303% and 0.1034% for
the linear field, 0.0178% and 0.144% for the quadratic field,
and 0.09126% and 0.164% for the cubic field, respectively. The
relative errors of q evaluated over 31 sample points along the
middle ring (see Figure 9), are 1.421%, 1.136% and 1.276% for
the linear, quadratic and cubic fields, respectively. Numerical re-
sults of q along the middle ring, together with the exact solution,
are shown in Figure 10. The numerical results agree excellently
with the exact solutions again. It should be pointed out here
that the input file for this problem contains only 263 data! The
RHBNM, if anything, is somewhat flexible and convenient, and
is an important step toward complete analysis automation.

FIG. 10. Normal flux, q, along the middle ring of the elbow pipe.

5. CONCLUSIONS AND DISCUSSION
The regular hybrid boundary node method has been extended

to solve potential problems in three dimensions. The RHBNM
is based on a hybrid model that involves three types of indepen-
dent variables, i.e. potentials and normal fluxes on the boundary
and potentials inside the domain, and coupled with the MLS
interpolation scheme over the boundary variables. Compared
with the MLBIE and MLPG, the RHBNM has the well-known
dimensionality of the BEM, e.g. for a 3-D object, only the 2-
D bounding surface needing be discretized. Compared with the
conventional BEM, it is a meshless method, requiring only a
nodal data structure on the bounding surface. Compared with
the BNM, it is a truly meshless method, with absolutely no cells
needed either for interpolation or integration purposes.

Numerical examples have shown the accuracy and conver-
gence of the method. The solution is most accurate for the po-
tentials and fluxes on the boundary and in the domain. High rates
of convergence have been achieved.

In contrast with the conventional BEM, reduced to the so-
lution of the singular-integral equations of the second kind, the
RHBNM leads to regular-integral equation of the first kind. The
evaluation of variables at internal points needs not further inte-
gration. As no singularities are involved, the serious “boundary
layer effect” that appears in the Hybrid BNM is eliminated.

However, the outside assignment of the source points of the
fundamental solutions causes some new problems. The perfor-
mance of the method is dependent on the value of the scale
factor, SF . Moreover, it is usually difficult to locate the source
points when a domain with concave boundary is considered. In
this study, the scale factor is only empirically determined by
numerical experiments, just as the other constant parameters in
Eqs. (11) and (21). For problems with concave boundary, the
multi-domain approach is recommended.

Although some drawbacks exist, e.g. many constant parame-
ters have to be determined by experience, the advantages of the
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RHBNM, such as meshless nature, high accuracy, high conver-
gence rate and no singularities, etc., are so attractive that this
method is certainly worthy of attention.
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